Error message

  • Deprecated function: implode(): Passing glue string after array is deprecated. Swap the parameters in drupal_get_feeds() (line 394 of /home/htdocs/kim63/html/includes/common.inc).
  • Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/htdocs/kim63/html/includes/menu.inc).
2010 and earlier
Article
Peyk, P., Schupp H. T., Elbert, T., Junghöfer, M.

Emotion processing in the visual brain: A MEG analysis

Peyk, P., Schupp H. T., Elbert, T., Junghöfer, M. (2008). Emotion processing in the visual brain: A MEG analysis. Brain Topography, 1-11. doi: 10.1007/s10548-008-0052-7

Recent functional magnetic resonance imaging (fMRI) and event-related brain potential (ERP) studies provide empirical support for the notion that emotional cues guide selective attention. Extending this line of research, whole head magneto-encephalogram (MEG) was measured while participants viewed in separate experimental blocks a continuous stream of either pleasant and neutral or unpleasant and neutral pictures, presented for 330 ms each. Event-related magnetic fields (ERF) were analyzed after intersubject sensor coregistration, complemented by minimum norm estimates (MNE) to explore neural generator sources. Both streams of analysis converge by demonstrating the selective emotion processing in an early (120 170 ms) and a late time interval (220 310 ms). ERF analysis revealed that the polarity of the emotion difference fields was reversed across early and late intervals suggesting distinct patterns of activation in the visual processing stream. Source analysis revealed the amplified processing of emotional pictures in visual processing areas with more pronounced occipito-parieto-temporal activation in the early time interval, and a stronger engagement of more anterior, temporal, regions in the later interval. Confirming previous ERP studies showing facilitated emotion processing, the present data suggest that MEG provides a complementary look at the spread of activation in the visual processing stream.